Spike synchrony generated by modulatory common input through NMDA-type synapses.

نویسندگان

  • Nobuhiko Wagatsuma
  • Rüdiger von der Heydt
  • Ernst Niebur
چکیده

Common excitatory input to neurons increases their firing rates and the strength of the spike correlation (synchrony) between them. Little is known, however, about the synchronizing effects of modulatory common input. Here, we show that modulatory common input with the slow synaptic kinetics of N-methyl-d-aspartate (NMDA) receptors enhances firing rates and also produces synchrony. Tight synchrony (correlations on the order of milliseconds) always increases with modulatory strength. Unexpectedly, the relationship between strength of modulation and strength of loose synchrony (tens of milliseconds) is not monotonic: The strongest loose synchrony is obtained for intermediate modulatory amplitudes. This finding explains recent neurophysiological results showing that in cortical areas V1 and V2, presumed modulatory top-down input due to contour grouping increases (loose and tight) synchrony but that additional modulatory input due to top-down attention does not change tight synchrony and actually decreases loose synchrony. These neurophysiological findings are understood from our model of integrate-and-fire neurons under the assumption that contour grouping as well as attention lead to additive modulatory common input through NMDA-type synapses. In contrast, circuits with common projections through model α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors did not exhibit the paradoxical decrease of synchrony with increased input. Our results suggest that NMDA receptors play a critical role in top-down response modulation in the visual cortex.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Passive Synaptic Normalization and Input Synchrony-Dependent Amplification of Cortical Feedback in Thalamocortical Neuron Dendrites

UNLABELLED Thalamocortical neurons have thousands of synaptic connections from layer VI corticothalamic neurons distributed across their dendritic trees. Although corticothalamic synapses provide significant excitatory input, it remains unknown how different spatial and temporal input patterns are integrated by thalamocortical neurons. Using dendritic recording, 2-photon glutamate uncaging, and...

متن کامل

Rate-specific synchrony: using noisy oscillations to detect equally active neurons.

Although gamma frequency oscillations are common in the brain, their functional contributions to neural computation are not understood. Here we report in vitro electrophysiological recordings to evaluate how noisy gamma frequency oscillatory input interacts with the overall activation level of a neuron to determine the precise timing of its action potentials. The experiments were designed to ev...

متن کامل

Impact of Neuronal Properties on Network Coding: Roles of Spike Initiation Dynamics and Robust Synchrony Transfer

Neural networks are more than the sum of their parts, but the properties of those parts are nonetheless important. For instance, neuronal properties affect the degree to which neurons receiving common input will spike synchronously, and whether that synchrony will propagate through the network. Stimulus-evoked synchrony can help or hinder network coding depending on the type of code. In this Pe...

متن کامل

Models of neuronal transient synchrony during propagation of activity through neocortical circuitry.

Stereotypic paroxysmal discharges that propagate in neocortical tissues after electrical stimulations are used as a probe for studying cortical circuitry. I use modeling to investigate the effects of sparse connectivity, heterogeneity of intrinsic neuronal properties, and synaptic noise on synchronization of evoked propagating neuronal discharges in a network of excitatory, regular spiking neur...

متن کامل

Presynaptic muscarinic receptors enhance glutamate release at the mitral/tufted to granule cell dendrodendritic synapse in the rat main olfactory bulb.

The mammalian olfactory bulb receives multiple modulatory inputs, including a cholinergic input from the basal forebrain. Understanding the functional roles played by the cholinergic input requires an understanding of the cellular mechanisms it modulates. In an in vitro olfactory bulb slice preparation we demonstrate cholinergic muscarinic modulation of glutamate release onto granule cells that...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 116 3  شماره 

صفحات  -

تاریخ انتشار 2016